Melatonin treatment increases the transcription of cell proliferation-related genes prior to inducing cell death in C6 glioma cells in vitro
نویسندگان
چکیده
A number of studies have suggested that melatonin possesses anticancer properties. However, conflicting data exists with regard to the role of melatonin in the treatment of cancer. In the present study, the effects of melatonin on the transcriptional regulation of three genes associated with cell proliferation (Nestin, Bmi-1 and Sox2), and on C6 glioma cell survival and viability, were investigated in vitro to evaluate the use of melatonin in cancer therapy. Melatonin was shown to increase the mRNA levels of Nestin, Bmi-1 and Sox2 in a similar pattern, with the highest mRNA levels noted at a concentration of 3 mM. At higher concentrations of melatonin (5 mM), the mRNA levels of Nestin, Bmi-1 and Sox2 were reduced from their peak levels, and were correlated with changes observed in immunofluorescence morphology studies, cell viability and survival assays. Immunofluorescence studies of Nestin-stained cells demonstrated that treatment with a higher concentration of melatonin (3 and 5 mM) led to the Nestin filaments condensing and rearranging around the cell nuclei, and an alteration in the cell morphology. C6 cell viability was also significantly decreased at 3 mM melatonin, and cell death was observed at 5 and 10 mM melatonin. These results suggested that Nestin, Bmi-1 and Sox2 were strongly correlated with the survival of C6 cells following treatment with melatonin, and that high therapeutic concentrations of melatonin (>5 mM) were required to induce cell death. These findings suggested that the implementation of melatonin in the treatment of glioma and other types of cancer may be inhibited by conflicting cell growth signals in cells. Therefore, adjunct therapy is required to improve the efficacy of melatonin in the treatment of cancer.
منابع مشابه
The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells
Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملO24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کامل